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A variety of primary, secondary, and tertiary amines were prepared in 84–95% yields using ammonia bor-
ane for the reductive amination of aldehydes and ketones in the presence of titanium isopropoxide.
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Table 1
Reductive amination using ammonia borane: examination of Lewis acids

O

H NH2
N
H+

1. Lewis acid (1.2 eq)
THF, RT, 1 h

2. NH3BH3 (1.5 eq)
RT

Entry Lewis acids Time (h) Yielda (%)

1 ZnCl2 10 80
2 ZnCl2

b 8 78
3 SiO2 11 75
4 NiCl2 24 Tracec

5 Ti(OiPr)4 4 94
Reductive amination of carbonyls or reductive alkylation of
amines, the reaction of amines with aldehydes and ketones in the
presence of a reducing agent, is one of the widely used and funda-
mental reactions in organic chemistry.1,2 Catalytic hydrogenation,
sodium cyanoborohydride,3 sodium triacetoxyborohydride,4

sodium- or5 zinc borohydride6 in the presence of Brønsted or Lewis
acids, and amine boranes, such as pyridine–BH3,7 2-picoline–BH3,8

2,6-diborane–methanol,9 dimethylamine–BH3,10 t-BuMeiPrN–BH3,11

5-ethyl-2-methylpyridine–BH3,12 and benzylamine–BH3
13 have

been utilized to accomplish this transformation. However, most of
these reagents suffer from drawbacks. For example, NaBH3CN pro-
duces toxic by-products, such as NaCN and HCN.14 Catalytic hydro-
genation is unselective since it can also reduce other functional
groups such as alkenes, alkynes, and a nitro group.15 The amine bor-
anes are relatively expensive and have to be stored under optimal
conditions. For example, pyridine–borane16 undergoes an autocata-
lytic, highly exothermic hydroboration of the pyridine ring.17

The simplest amine borane, ammonia borane (AB), is a solid
with remarkable thermal and hydrolytic stability. Although the
use of AB for the reduction of carbonyls has been reported three
decades ago,18 to the best of our knowledge, its application for
reductive amination has not been reported, probably due to its rel-
atively high cost.19 Ammonia borane has recently received a lot of
attention as one of the promising materials for alternate energy.20

As part of our project involving AB as a hydrogen storage material,
we recently reported a large-scale synthesis of ammonia borane,21

which has been favorably received by the community.22 Our
project required the handling of large quantities of AB and we
observed that, indeed, AB is more convenient to handle in air than
sodium borohydride. This prompted us to examine AB for reduc-
tive amination and the results are described herein.

A successful reductive amination procedure relies on the rapid
imine formation and selective reduction. Since imine formation is
usually the rate-determining step for in situ reductive aminations,
addition of mild Lewis acids as co-reactants is desirable. We,
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therefore, examined a selected series of Lewis acids such as ZnCl2,
NiCl2, SiO2, and Ti(OiPr)4 (Table 1) and carried out the reductive
amination reaction in tetrahydrofuran (THF) using AB as the reduc-
ing reagent. In the absence of Lewis acids, imine formation does
not occur and the aldehyde is reduced to benzyl alcohol.

In a typical reaction protocol, benzylamine (1.2 mmol) was
added to the solution of benzaldehyde (1 mmol) in THF (5 mL)
followed by the addition of the Lewis acid (1.2 mmol), and the
reaction mixture was stirred for 1 h at room temperature (rt).
Ammonia borane (1.5 mmol) was then added and stirring was
continued at the same temperature until the completion of the
reaction (disappearance of the carbonyl in thin layer chromato-
gram, 4 h). Utilization of ZnCl2 provided 80% yield of dibenzyl-
amine and increasing the equivalents of the amine had no
beneficial effect. NiCl2 failed to catalyze the reaction and the best
result, 94% yield of the product amine, was obtained with Ti(OiPr)4.
Under the optimized condition,23 the ratio of carbonyl/amine/
Ti(OiPr)4/AB is 1:1.2:1.2:1.5.

The reductive amination of a variety of aryl and alkyl aldehydes
and ketones with aryl and 1�- and 2�-alkyl amines of varying steric
a Isolated yield.
b 1.5 equiv benzylamine was used.
c Most of the starting material was recovered.
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Table 2
Preparation of 2�- and 3�-amines via reductive amination using ABa

Entry R1R2CO R3R4NH Time (h) Product Yieldb (%)

1 O NH2 4
N
H 94

2
O NH2

6 N
H

88

3
O NH2

7 N
H 95

4
O NH 5

N
84

5
O NHO 3

N
O 85

6
O

MeO

NH2
4

N
H

MeO
89

7
O

NC

NH2
6

N
H

NC
85

8
O

F3C

NH2
7

N
H

F3C
84

9 N
O NH2 9 N

H
N

90

10
CHO NH2

4
N
H 91

11
CHO NH2

2
N
H 91

12

CHO NH2

8

H
N

87

13
CHO NH2

5
N
H 94

14 CHO NH2
6 N

H 92

15 CHO
NH2

10
H
N 90

16

O NH2

8 N
H 86

17

O
NHO

8 N
O

84

18
O

NH2

8

H
N

89

19 O NH2
7

H
N 92

20
O

NH2

8

H
N

86

21 O

NH2
7

H
N

90

22 O NH2 8
H
N 91

a For the reaction conditions see footnote 23.
b Isolated yields on the basis of the carbonyls.
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Table 3
Preparation of 1�-amines via reductive amination using AB

R1

O

R2

1. Ti(OiPr)4, Et3N, NH4Cl
THF, RT, 8 h

2. NH3BH3
RT, 10 h

R1

NH2

R2

Entry Ketone R1R2CH2NH2 Yielda (%)

1

O NH2

85

2

O

MeO

NH2

MeO

83

3

O NH2

75

4

O

O2N

NH2

O2N

72

5 O NH2 74

a Isolated yield.
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requirements using AB as the reductant was accomplished within
2–10 h to obtain the desired 2�- or 3�-amines, respectively, in
80–94% yields (Table 2). The reactions were slower with increasing
steric requirements of the carbonyl or amine, and ketones were
slower to react than aldehydes.

Following the successful application of AB for the preparation of
2�- and 3�-amines, we focused on the synthesis of 1�-amines,
which remains a challenge due to over-alkylation reaction.24 Tri-
tylamine,25 diallylamine,26 and NH4Cl27 are often employed as sur-
rogates to prepare primary amines and we chose NH4Cl. In a
typical reaction,28 Ti(OiPr)4 was added to the solution of acetophe-
none, NH4Cl, and triethylamine in ethanol and stirred for 10 h at
ambient temperature. Ammonia borane was then added and stir-
red for an additional 8 h to obtain the desired primary amine in
83–85% yield (Table 3). Aryl and alkyl ketones furnished the 1�-
amine in 72–75% yields. However, the reaction of aldehydes re-
sulted in 2�-amines.

In conclusion, we have shown that ammonia borane is a versa-
tile and efficient reagent for the reductive amination of aldehydes
and ketones providing 2�- and 3�-amines in good to excellent
yields. The formation of primary amines was achieved in good
yield from ketones using Ti(OiPr)4/Et3N and NH4Cl as ammonia
source. We believe that this reductive amination process will find
applications in organic synthesis due to the stability and simple
preparation of AB.21
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